氮化鋁(AlN)陶瓷作為一種新型的電子器件封裝基板材料,具有熱導率高、強度高、熱膨脹系數低、介電損耗小、耐高溫及化學腐蝕,絕緣性好,而且無毒環保等優良性能,是被國內外一致看好最具有發展前景的陶瓷材料之一。
作為一種非常適合用于高功率、高引線和大尺寸芯片封裝基板材料,氮化鋁陶瓷基板的熱導率一直是行業內關注研究的難題,目前商用氮化鋁基板的熱導率距離其理論熱導率還有很大的差距,因此,在降低氮化鋁陶瓷燒結溫度的同時研制出更高熱導率的氮化鋁陶瓷基板,對于電子器件的快速發展有著重大意義。
氮化鋁陶瓷基板
要想制備出熱導率更高的氮化鋁基板,就要從其導熱原理出發,探究究竟哪些因素影響了熱導率。
氮化鋁的熱傳導機理
熱導率,也即導熱系數,作為衡量物質導熱能力的量度,是導熱材料最重要的性質之一。AIN屬于共價化合物,其分子內部沒有可自由移動的電子,因此熱量的傳遞是以晶格振動這種形式來實現的,這種方式叫“聲子傳熱”。晶體內部溫度高的部分能量大,溫度低的部分能量小,能量通過聲子之間互相作用,從高能量向低能量發生傳遞,能量的遷移導致熱量的傳導。
聲子型熱傳導
可以看到,把晶格內部的原子看成小球,這些小球之間彼此由彈簧(共價鍵)連接起來,從而每個原子的振動都要牽動周圍的原子,使振動以彈性波的形式在晶體中傳播。這種晶格振動產生的能量量子,即“聲子”,聲子相互作用使振動傳遞,從而使能量遷移,傳導熱量。
熱導率K在聲子傳熱中的關系式為:
上式c為陶瓷體本身的熱容,v為聲子的平均運動速度,λ為聲子的平均自由程。材料本身的熱容(c)接近常數,氮化鋁的熱容大是氮化鋁的熱導率高的原因之一,聲子速度(v)僅與晶體密度和彈性力學性質有關,也可視為常數,所以,聲子的傳播距離(平均自由程),是影響最終宏觀上氮化鋁陶瓷的熱導率表現的關鍵。
所以我們通過氮化鋁內部聲子的熱傳導機理可知,要想熱導率高,就要使聲子的傳播更遠(自由程大),也即減少傳播的阻力,這種阻力一般來自于聲子擴散過程中的各種散射。燒結后的陶瓷內部通常會有各種晶體缺陷、雜質、氣孔以及引入的第二相,這些因素的作用使聲子發生散射,也就影響了最終的熱導率。
影響熱導率的關鍵因素
通過不斷研究證實,在眾多影響AlN陶瓷熱導率因素中,AlN陶瓷的顯微結構、氧雜質含量尤為突出。
(1)氮化鋁陶瓷微觀結構對熱導率的影響
在實際應用中,常在AlN中加入各種燒結助劑來降低AlN陶瓷的燒結溫度,與此同時在氮化鋁晶格中也引入了第二相,致使熱傳導過程中聲子發生散射導致熱導率下降。
添加燒結助劑引入的第二相會出現幾種情況:從分布形式來看,可分為孤島狀和連續分布在晶界處;從分布位置來看,可分為分布在晶界三角處和晶界其他處。連續分布的晶粒可為聲子提供了更直接的通道,直接接觸AlN晶粒比孤立分布的AlN晶粒具有更高的熱導率,所以第二相是連續分布的更好;分布于晶界三角處的AlN陶瓷在熱傳導過程中產生的干擾散射較少,而且能夠使AlN晶粒間保持接觸,故而第二相分布在晶界三角處更好。
(a)連續分布 (b)晶界三角處分布
氮化鋁晶體內第二相的分布示意圖
此外,晶界相若分布不均勻,會導致大量的氣孔存在,阻礙聲子的散射,導致 AlN 的熱導率下降,晶界含量、晶界大小以及氣孔率對熱導率的表現也有一定的影響。
因此,在AlN陶瓷的燒結過程中,可以通過改善燒結工藝的途徑,如提高燒結溫度、延長保溫時間、熱處理等,改善晶體內部缺陷,盡可能使第二相連續分布以及位于三叉晶界處,從而提高氮化鋁陶瓷的熱導率。
(2)氧雜質對熱導率的影響
AIN極易發生水解和氧化,使氮化鋁表面發生氧化,導致氧固溶入AIN晶格中形成鋁空位缺陷,這樣就會導致聲子散射增加,平均自由程降低,熱導率也隨之降低。
AlN 晶格中的氧含量和熱導率
AlN 晶格中的氧含量(wt%) | 熱導率(W/m·K) |
0.31 | 130 |
0.24 | 146 |
0.19 | 165 |
0.13 | 171 |
0.12 | 185 |
因此,為了提高熱導率,加入合適的燒結助劑來除去晶格中的氧雜質是一種有效的辦法。
氮化鋁陶瓷的燒結的關鍵控制要素
AlN是共價化合物,原子的自擴散系數小,鍵能強,導致很難燒結致密,其熔點高達3000℃以上,燒結溫度更是高達1900℃以上,如此高的燒結溫度嚴重制約了氮化鋁在工業上的實際應用。
此外,AlN表層的氧雜質是在高溫下才開始向其晶格內部擴散的,因此低溫燒結還有另外一個作用,即延緩燒結時表層的氧雜質向 AlN 晶格內部擴散,減少晶格內的氧雜質,因此制備高熱導率的AlN陶瓷材料,低溫燒結技術的研究勢在必行。
目前工業上,氮化鋁陶瓷的燒結有多種方式,可以根據實際需求,采取不同的燒結方法來獲得致密的陶瓷體,無論用什么燒結方式,細化氮化鋁原始粉料以及添加適宜的低溫燒結助劑能夠有效降低氮化鋁陶瓷的燒結溫度。
(1)采用小粒徑氮化鋁粉
氮化鋁燒結過程的驅動力為表面能,顆粒細小的AlN粉體能夠增強燒結活性,增加燒結推動力從而加速燒結過程。研究證實,當氮化鋁原始粉料的起始粒徑細小20倍后,陶瓷的燒結速率將增加147倍。
燒結原料應選擇粒徑小且分布均勻的氮化鋁粉,可防止二次再結晶,內部的大顆粒易發生晶粒異常生長而不利于致密化燒結;若顆粒分布不均勻,在燒結過程中容易發生個別晶體異常長大而影響燒結。
氮化鋁晶粒生長
此外,氮化鋁陶瓷的燒結機理有時也受原始粉末粒度的影響。微米級的氮化鋁粉體按體積擴散機理進行燒結,而納米級的粉體則按晶界擴散或者表面擴散機理進行燒結。
但目前而言,細小均勻的氮化鋁粉體制備很困難,大多通過濕化學法結合碳熱還原法制備,不僅燒結工藝復雜,而且耗能大,大規模的推廣應用仍舊有一定的限制。國內在小粒徑高性能氮化鋁粉的供應上,仍十分稀缺。
(2)氮化鋁陶瓷低溫燒結助劑的選擇
在燒結過程中通過添加一些低熔點的燒結助劑,可以在氮化鋁燒結過程中產生液相,促進氮化鋁胚體的致密燒結。此外,一些燒結助劑除了能夠產生液相促進燒結,還能夠與氮化鋁晶格中的氧雜質反應,起到去除氧雜質凈化晶格的作用,從而提高AlN陶瓷的熱導性能。
燒結助劑作用過程示意圖
然而,燒結助劑不能盲目的添加,添加的量也要適宜,否則可能會產生不利的作用,燒結助劑會引入第二相,第二相的分布控制對熱導率影響較大。
經研究,在選擇氮化鋁陶瓷低溫燒結助劑時應參照以下幾點:
①添加劑熔點較低,能夠在較低的燒結溫度下形成液相,通過液相促進燒結;
②添加劑能夠與Al2O3反應,去除氧雜質,凈化AlN晶格,進而提高熱導率;
③添加劑不與AlN反應,避免缺陷的產生;
④添加劑不會誘發AlN發生分解和氧化產生Al2O3和AlON,避免氮化鋁陶瓷熱導率急劇降低。
目前發現的適合作為燒結助劑的材料有Y2O3、CaO、Li2O、BaO、MgO、SrO2、La2O3、HfO2和CeO2等不與AlN發生反應的氧化物,以及一些稀土金屬與堿土金屬的氟化物和少量具有還原性的化合物(CaC2、YC2、TiO2、ZrO2、TiN等)。
單獨采用某種單一的燒結助劑,在常壓下燒結通常需要高于 1800℃的溫度,利用復合助劑,設計合理的助劑及配比,可以進一步有效降低燒結溫度,也是目前普遍采用的一種氮化鋁低溫燒結方法。
總結
氮化鋁陶瓷基板電子封裝領域的應用范圍越來越廣,目前也有一些國內企業在這個領域有所建樹,然而相對于早已接近紅海的海外市場,我國的氮化鋁陶瓷基板的發展仍處于起步階段,在高性能粉體及高導熱基板的制備生產上仍有一定的差距。深入了解材料的作用機理,從根源上“對癥下藥”,才能讓我國的陶瓷基板產業更上一個臺階。
參考來源:
大功率 LED 用高熱導率氮化鋁陶瓷基座的制備與封裝研究,李宏偉(中國計量學院)。
粉體圈 小吉
作者:粉體圈
總閱讀量:1885